
ICT159 Lecture Notes Topic 9 – Page 1

Topic 9 –
Object Oriented
Programming

THE OBJECT-ORIENTED

PARADIGM
Introduction
 In Topic 5, we looked at top-down design and structured,

modular programming.

 Object-oriented programming (OOP) is an entirely different

way of approaching the process of writing a program.
 In fact, in its most complete form it heavily influences both

the design process and the final implementation.

 As we will see in this topic it also determines the structure of

the way the solution to a problem is divided up in a very
fundamental way.

 Object-oriented programming can be done in the C language.
 However, the language was not designed for this and involves

use of some fairly advanced features.
 Therefore, in this unit, we will only be looking at the theory of

object-oriented programming.

ICT159 Lecture Notes Topic 9 – Page 2

The Structured Model

 In a procedural program we have separate modules of code

(functions in C) which do various things.

 We also have data which is declared inside modules and can

then be passed around between modules.
 However, the data doesn't actually belong to any of these

functions, although the variables that store it do.
 Instead the data is “just passing through”.

 As we end up with more and more complex data structures to

model the problems we are trying to solve, there is more and
more work maintaining and organising these structures.

 Therefore, our program will include a large number of
functions that need to be called in order to ensure these data
structures work correctly with the program.

ICT159 Lecture Notes Topic 9 – Page 3

Programs are Made of Objects
 Procedural structured programming that is used in languages

like C involves taking the high-level algorithm which solves a
problem and dividing it up into the individual steps.

 Each of these steps becomes a separate module in our
program.

 Often these steps are broken up further into substeps which
means that a function will call other functions in order to
complete its task.

 With the OO paradigm, the program is divided up into objects.

 These sometimes relate to physical objects, e.g., a program
managing data about people might have a Person object.

 Of course they don't have to be physical things but by
making an object for them they can be treated a little like
they are.

 One major difference here is that OO is much more data-

centric in terms of developing a solution whereas the
traditional approach is much more concerned with the steps
involved in solving the problem (code-centric).

 Of course, OO programs also contain code to do things with

the objects otherwise they couldn't do anything.

 But this is all very vague so what exactly is an object???

ICT159 Lecture Notes Topic 9 – Page 4

Object = Code + Data?

 In OOP the objects are made up of both code (things that the

object can do) and data (information about that particular
object).

 In this way OOP bundles together both the operations that
relate to the object and the information that has to be stored in
order to perform those operations.

 This doesn't happen in procedural structured programming

because the actual data doesn't really belong anywhere.

 So our Person object might store data like the person's name,

their phone number and their email address.

 This makes it quite a lot like a struct in C.

 However, unlike a struct the code to process that data is
bundled together with it.

 So there might be methods in an object to set the person's
name to a given value and/or to send an email to them.

 So an object is a little like a struct that also has functions
(methods) as part of it to perform operations on the data it
stores.

 These operations depend on what is appropriate to the
object and what the program needs to do.

ICT159 Lecture Notes Topic 9 – Page 5

Classes vs Objects
 So an object is made up of code and data and, in OOP,

programs are made up of objects.
 However, object-oriented code is often said to be made up

of classes.

 The difference between classes and objects is actually a little

subtle but is crucial to understand.

 If we have a Person object then that stores data about a

specific person and can perform various operations on the data
relating to that person.

 However, there may be lots of different people for which data
has to be stored so separate objects will be needed for each.

 A class therefore is a general specification of an object, a little

like a blueprint or a design.

 We can write a Person class and this won’t actually store data

about any particular person but rather defines what data is
stored and also what operations can be performed on this.

 We can then create any number of Person objects based on
this Person class.

 This is a little bit like the data type int and declaring a

specific variable of type int.
 We say that an object is an instance of a particular class.

 Classes are therefore effectively complex data types and

objects are like variables declared from that type.
 The difference between variables and objects though is that

objects contain code as well as data and can perform
operations on the data they hold.

ICT159 Lecture Notes Topic 9 – Page 6

Modular Programming Principles
and OOP
 In Topic 5 we looked at a number of principles relating to

modular programming, namely abstraction, code re-use, high
cohesion and low coupling.

 In general these principles apply very strongly to OOP as well.

 Most OO languages provide a number of features to enhance

and enforce abstraction.
 These mean that people who are using classes do not need

to know the details of how those classes work, just what
they do.

 In OOP this is commonly called encapsulation.

 In fact, OOP enforces abstraction even more rigorously
than non-OO programming.

 Access to either the code or data inside of an object is
often restricted.

 In particular, data inside of an object is rarely accessible
outside of that object.

 These are referred to as private data members.
 However, code modules usually are accessible.
 Therefore, access to the data inside of an object must

instead occur through the function.

 The designer of the class specifies which pieces of
data/modules are accessible, and which aren’t.

 This allows control over how the program at using the
class can interact with it, and thereby help ensure it is used
correctly.

ICT159 Lecture Notes Topic 9 – Page 7

 Code-reuse is a critical part of OOP in that the classes created

must be general “blueprints”.
 Objects can then be created as instances of these classes

facilitating code re-use.
 In more advanced OOP you can actually take an existing

class and extend it by adding new features and adapting it
to your specific requirements without needing to start from
scratch.

 This is called inheritance and allows even more code re-
use.

 Some OO languages can also support the ability to apply a
module to different combinations of types of data given as
parameters.

 This is called polymorphism and can also assist in reuse.

 High cohesion applies to both the design of the classes and

their code modules/methods.
 Classes only store data that is relevant to their task.
 Methods are often particularly narrowly focused in terms

of the tasks they perform.

 Low coupling also applies to OOP.

 In some ways it is slightly less significant since less data
is passed around between modules.

 However, in others it is more important as data is
generally completely inaccessible outside of the object.

ICT159 Lecture Notes Topic 9 – Page 8

 BUILDING CLASSES
Methods and Constructors
 So to do OOP we need to first define what classes are needed.
 And classes are made up of code and data.

 Code modules in object-oriented languages are generally

called methods (similar to functions in C).
 So the code that makes up a class are all part of methods.

 The methods found in classes perform various operations that

relate to what the class is for
 Specifically they perform operations on the data that is part

of the class.

 However, there is also a general category of methods that are

involved in setting up each instance of the class (object) for
use.

 Whenever a new instance of a class is created, one of these
methods is called to make it ready for use.

 This special type of methods is called a constructor.

 Constructors look just like ordinary methods except they have

the same name as the class which they are in.
 Note that since there can be a number of different ways to

initialise new objects, there is often more than one
constructor for each class.

 Creating a new object involves calling the constructor, which

sets up all of the data inside of the new object and reduces the
work that the programmer needs to do.

ICT159 Lecture Notes Topic 9 – Page 9

 Access methods
 As indicated previously, the data inside of an object is

generally not accessible outside of that object.

 To access these private data members, instead the
programmer using the class must call a method.

 These methods are known as access methods.

 There are two basic categories of access method.

 Set methods allow the programmer to change the value
within the object.

 Get methods allow the programmer to retrieve a value from
within the object.

 This could be a value that has been calculated by the
method

 Or it could simply be the value of the private data
member, returned by the method.

 The programmer won’t necessarily know which
applies, which enforces encapsulation and abstraction.

 Using access methods allows the designer of the class to
control how the programmer interacts with that class.

 For example, the programmer cannot change the values of
private data members, except through an access method.

 The access method can then impose restrictions on what
can be done.

 For example, a Get method might refuse to give the
programmer a value if the variables concerned don’t yet
have values in them.

 Similarly, a Set method might prevent the setting of invalid
values.

ICT159 Lecture Notes Topic 9 – Page 10

 BASICS OF OO DESIGN
 Writing a program in a structured, procedural language like

C largely involves working out what steps you need to
perform.

 Applying a process like top-down design, simply breaks
those steps up into a hierarchy.

 Therefore, structured design focuses on the code and what
functions need to exist to solve a problem.

 Writing a program in an OO language is quite different.

 The design process involves looking at the data involved in
the problem, and then working out what needs to be done in
processing that data.

 Therefore, OO design is very data-centric.

 Writing a program in an OO language therefore generally

involves:
 Defining all the classes that are needed to solve the

problem.
 Creating instances of those classes (objects) that are

needed.
 Writing code to execute the code (called methods) that are

part of these objects.

 Think about a simple program like the triangle program from
the assignment:

 What data would this programme need to store?

 What processing needs to be done on that data?

 What other methods might be needed?

ICT159 Lecture Notes Topic 9 – Page 11

 SUMMARY
 This has just been a very basic introduction to the concepts

involved in object-oriented programming.

 If you go on to do more computer science, you will study
object-oriented languages and OO design.

 You would not have to apply OO concepts in any of the
programming for this unit.

 However, remember that the theory of these concepts is
examinable!

